

Specification Sheet

Process Air Duct Heaters

Ideal for Tempering Forced Air in Many Industrial Processes

There are numerous applications of air duct heaters at industrial and commercial sites. Whether it is an open coil air duct heater, a tubular or a finned tubular duct heater, each duct heater serves the main purpose which remains the same.

However, the type may vary based on their construction, working, advantages, disadvantages, and functionality differences.

Air duct heaters can be designed specifically for high pressure and/or hazardous locations. Turnkey systems including the duct heater, power and temperature control panel, and the temperature and overtemperature sensors can also be provided.

Applications

One of the leading uses of tubular duct heaters is to process air in industrial heating applications and to temper forced air in a number of industrial processes. The heater can come in a number of different wattages. This will largely dependent on the outlet of air temperature and the velocity of the air coming through inside the duct heaters.

The tubular heating elements that are used in duct heaters are important in a number of ways, primarily in terms of its strength. These heating elements are toughened up and designed to provide protection against corrosive air environments and even provide effective resistance to vibration in comparison to other heating elements of duct heaters such as open coil ones.

- Air Drying/ Curing Operations
- Annealing
- Autoclaves
- Booster Air Heaters
- Forced Air Comfort Heating
- Dehumidification
- Heat Treating
- HVAC

Fig 1. 120kW Casette Type Tubular Duct Heater

Performance Capabilities

- Watt Densities up to 40W/in² (6.2W/cm²)
- Recommended process temperatures from (-29°C to 650°C)
- Voltages up to 600VAC

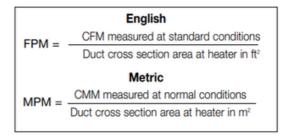
Key Features

- Single and Three-Phase Voltages
- Stainless Steel Supports
- Field Replaceable Heating Elements, if required
- 2" 3 1/2" Thick Insulation, if required
- General Purpose Terminal Enclosure
- Special Sizes, Wattages, and Materials Available Upon Request
- Built Stainless Steel Frame Available Upon Request

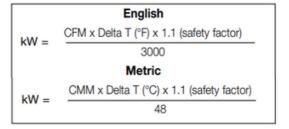
VEMA Process Air Duct Heaters are designed and manufactured according to customer specifications. Reliability and robustness are key drivers for our engineers.

Choosing A Duct Heater

A broad range of custom built electric duct heaters with capacities up to 1000kW is available upon request. It can be used for applications with the following voltages:


- 200V 1 Phase or 3 Phases
- 600V 1 Phase or 3 Phases
- 208V/ 240V 1 Phase
- 208V 3 Phases
- 415V 3 Phases
- Other Voltages Available Upon Request

The English and metric graphs, shown on the following pages will help you to select the correct duct heater. These graphs include: Watt Density vs. Air Temperature/ Velocity, Watt Density vs. Sheath Temperature and Pressure Drop vs. Air Velocity.


These graphs, with the quick formulas on this page, along with information specific to your application, will determine the correct duct heater specifications. However, if engineering assistance is needed, contact your sales representative.

Required Application Information

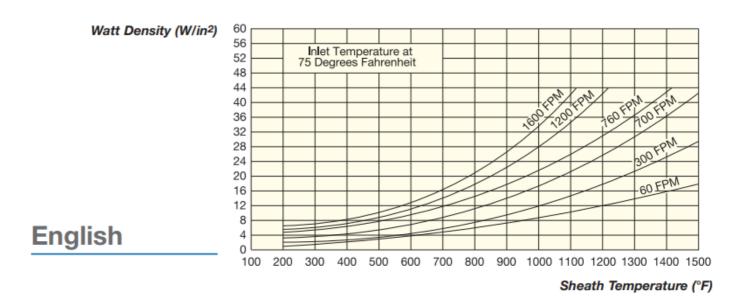
- Desired outlet air temperature
- Inlet air temperature
- Delta T the temperature difference between inlet and desired outlet temperature
- Air volume (CFM/CMM) measured at both inlet temperature and pressure
- Air velocity in feet per minute (FPM); meters per minute (MPM) which equals:

Minimum duct heater wattage (kW). This can be determined by:

NOTE: The duct heater, or combination of duct heaters, used for the process should be equal to or exceed the minimum wattage calculation.

Finned Tubular Elements vs Unfinned Tubular Elements

Finned Tubular Elements	Unfinned Tubular Elements
The most common design	Cost effective yet reliable design
Include the highest wattage / cross sectional duct area	Lower watt density, which requires more heating elements
Energy Saver	Protect from electrical shock
Made of stainless steel 304/316L/Incoloy 800 tube with corrugated fin wrapped around it	Made of stainless steel 304/316L/Incoloy 800 tube
Maximize the heat transfer surface of the element	Can be installed close to a register or grille
Provide lower operating temperature	Slower heat dissipation rate
Designed for low maintenance	Designed for low maintenance


Fig 2. Type of Heaters Comparison

Checklist - Choosing The Proper Duct Heater (cont.) Element Watt Density vs. Sheath Temperature & Air Velocity

Use graph (English or Metric) to plot

- \bullet Watt Density $\forall s.$ Air Velocity to determine Sheath Temperature or
- Watt Density vs. Sheath Temperature to determine the required Air Velocity

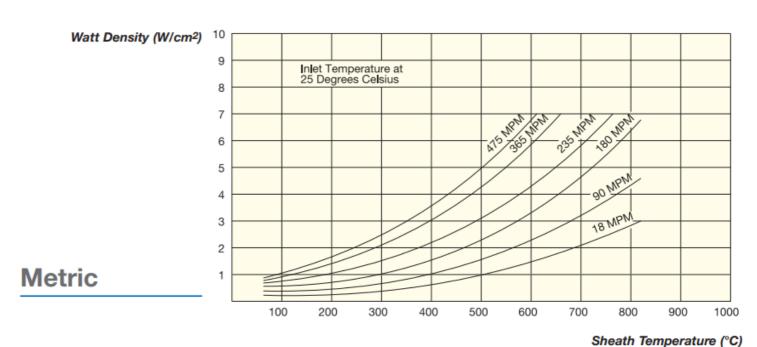
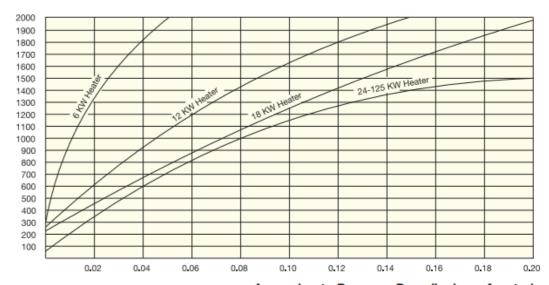


Fig 3. Watt Density vs. Sheath Temperature



Checklist - Choosing The Proper Duct Heater (cont.) Pressure Drop vs. Air Velocity

Use graph (English or Metric) to plot

• Pressure Drop vs. Air Velocity for standard duct heaters sizes used to properly Size Blowers

Air Velocity (feet per minute)

English

Approximate Pressure Drop (inches of water)

Calculating Air Velocity

Velocity (feet/minute) = $\frac{\text{SCFM (CFM measured at standard conditions)}}{\text{Duct cross sectional area at heater in square feet}}$

Air Velocity (meters per minute)

Metric

Fig 4. Pressure Drop vs. Air Velocity (For Sizing Blower)

Once the volume of airflow (CFM - in cubic feet per minute) and the required temperature rise (ΔT – in degrees F) through the heater are known, the required kilowatt rating (KW) of the heater can be determined from the formula:

$$KW = \frac{CFM \times \Delta T^{\circ}F}{3193} \quad KW = \left(\frac{Liters/Second \times \Delta T^{\circ}C}{837}\right)$$

When the desired heating capacity in BTU/Hr is known, the KW is determined from the following formula:

$$KW = \frac{BTU/Hr}{3412}$$

Static Pressure Drop

Static pressure drop through an open coil or unfinned tubular elements is quite low and, in most cases, can be ignored when calculating system pressure drop.

In other hand, the pressure drop across a finned tubular heater is greater tan across an open coil and unfinned tubular heater; but normally not enough to matter. It varies with flow velocity ranging from 0.04" H2O at 500 fpm to about 0.30" H2O at 1500 fpm when elements are banked together in several rows for duct heaters.

The curves in following figure 5 gives all the data in 3 constructions.

Minimum Air Velocity Required

Electric heaters differ from steam or hot water coils in that the heat output is constant as long as the heater is energized. Therefore, sufficient airflow must be provided to prevent overheating and nuisance tripping of the thermal cutouts.

The minimum required velocity is determined from Figure 6 on the basis of entering air temperature and KW per square foot of cross sectional duct area. The maximum air inlet temperature for open coil heaters is 100°F (38°C) and for finned tubular heaters is 80°F (27°C).

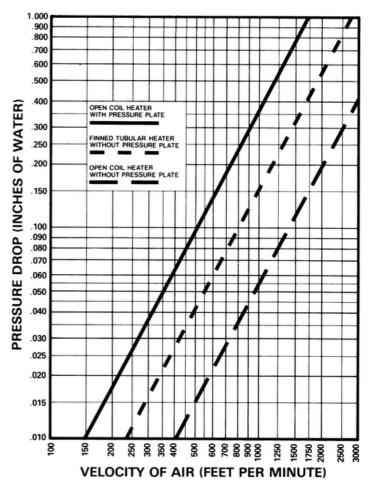


Fig 5. Types of Heaters' Pressure Drop vs. Air Velocity

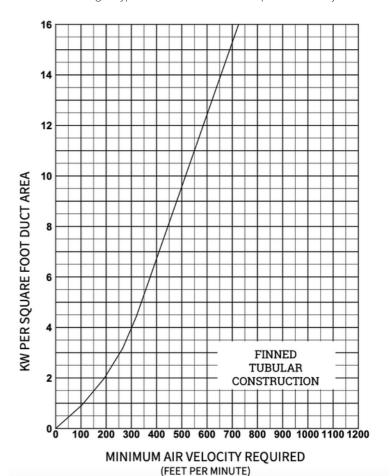


Fig 6. Minimum FPM for FInned Elements

Alternative Auxiliary Duct Heater Controls

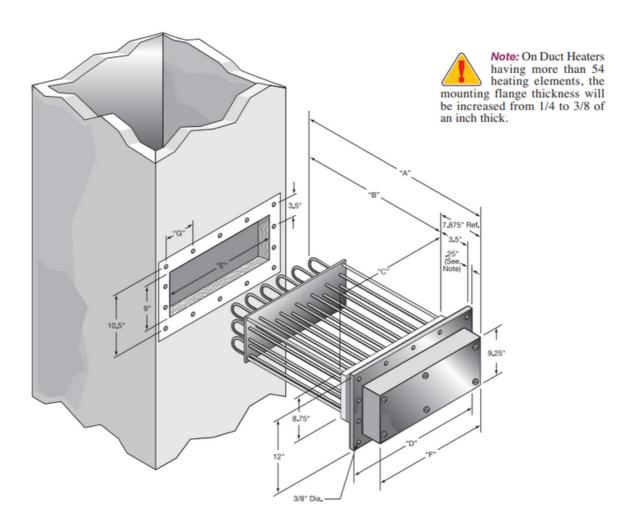
- Duct Thermostats
 - Fixed Temperature Auto Reset Type
 - Fixed Temperature Manual Reset Type
 - Multi Temperature Range Adjustable Type
- Controller
- SCR Controllers
- Fixed Pressure Differential Switch
- Main Disconnect
- On/Off Switch
- Magnetic Contactors
- Step Controllers
- Load Fuses
- Control Transformers
- Secondary Manual Reset Thermal Cut-Out
- Pilot Lights

Installation Recommendations

- Duct heaters may be bolted to the ductwork through the side, bottom or top. Bottom and side mounting are preferred to minimize wiring/terminal enclosure temperatures.
- Before mounting, consideration should be given to the strength of the ductwork required to support the weight of the heater. Add additional hangers or supports as required.
- The inlet side of the unit should be at least 48 inches downstream from any change in duct size or duct direction.
- To minimize pressure drop, mount the duct with the narrow width of the heater perpendicular to the air flow.
- Duct heaters may be mounted in tandem to increase kW that can be installed.
- Process temperature sensing should be located downstream from the duct heater.
- Air flows must never be interrupted. Such events will
 cause overheating and/or premature heater burnout.
 Your installation should include high limit temperature
 controls. All standard duct heaters have a thermowell
 attached to one element for installing a thermocouple to
 sense element temperature. Additional protection for the
 heater from low air flow can be achieved by installing an
 air flow switch or pressure switch on the inlet side.
- Select the terminal housing that provides the best terminal protection from the environment surrounding the application.

Wiring Recommendations

- Power supply cables must have a minimum ampacity pf 125% of the maximum heater load and be rated for the ambient temperature of the heater enclosure.
- The air handler should run on a time delay after the heater is de-energized. This allows the elements to cool down without over-heating adjacent areas.
- Duct heaters drawing more than 48 Amps are divided into smaller branch circuits, each drawing 48 Amps or less. Please note that the number of circuits, can be changed to accommodate any wiring requirements you may have.

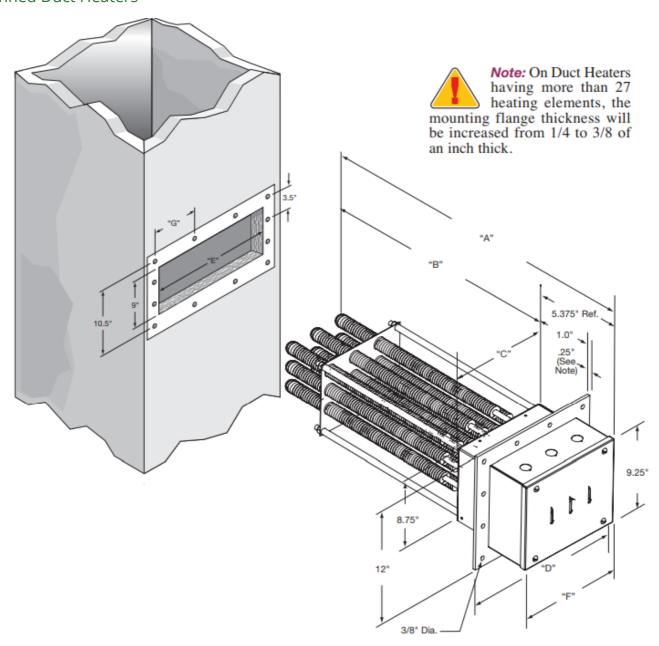

Fig 7. 80kW Flanged Type Tubular Duct Heater

Maintenance Recommendations

- Never perform any type of service on duct heaters prior to disconnecting all power supply lines
- Periodically check the mounting screws and bolts have not become loose from blower vibration
- Periodically check that electrical connections are clean and tight

Typical Installation

• Tubular Duct Heaters



Standard (Non-Stock) Duct Heater Construction Specifications

Dimensions Reference	"	Α"	"B"		"C"		"D"		"E"		"F"		"G"		Number of	Approximate Net Weight	
Number	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	Elements	lbs	kgs
1	27%	708	20	508	23/4	70	61/2	165	3	76	35%	92	21/2	64	6	22	10
2	27%	708	20	508	43/4	121	81/2	216	5	127	5 %	143	31/2	89	12	31	14
3	27%	708	20	508	6¾	171	101/2	267	7	178	75/8	194	3	76	18	41	19
4	27%	708	20	508	83/4	222	121/2	318	9	229	9%	244	23/4	70	24	51	23
5	27%	708	20	508	10¾	273	14½	368	11	279	11%	295	31/4	83	30	62	28
6	27%	708	20	508	123/4	324	161/2	419	13	330	13%	346	33/4	95	36	73	33
7	27%	708	20	508	$14\frac{3}{4}$	375	18½	470	15	381	15%	397	41/4	108	42	84	38
8	27%	708	20	508	16¾	425	201/2	521	17	432	17%	448	43/4	121	48	95	43
9	27%	708	20	508	18¾	476	221/2	572	19	483	19%	498	51/4	133	54	106	48
10	27%	708	20	508	20¾	527	241/2	622	21	533	21%	549	53/4	146	60	117	53
11	32%	835	25	635	20¾	527	241/2	622	21	533	21%	549	53/4	146	60	130	59
12	$40\frac{3}{8}$	1026	321/2	826	20¾	527	241/2	622	21	533	21%	549	53/4	146	60	155	70
13	$49\frac{3}{8}$	1254	41½	1054	20¾	527	241/2	622	21	533	21%	549	53/4	146	60	180	82

Typical Installation

• Finned Duct Heaters

Standard (Non-Stock) Duct Heater Construction Specifications

Dimensions Reference	"]	Α"	"B"		"C"		"D"		"E"		"F"		"G"		Number of	Approximate Net Weight	
Number	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	Elements	lbs	kgs
1	253/8	645	20	508	3¾	95	7	177.8	4	102	41/4	108	23/4	70	3	22	10
2	$25\frac{3}{8}$	645	20	508	61/4	159	91/2	241	6.5	165	63/4	171	4	102	6	31	14
3	$25\frac{3}{8}$	645	20	508	83/4	222	12	305	9	229	91/4	235	31/2	89	9	41	19
4	253/8	645	20	508	113/4	298	14½	368	12	305	$11\frac{3}{4}$	298	31/4	83	12	51	23
5	253/8	645	20	508	13¾	349	17	432	14	356	141/4	362	31/8	98	15	62	28
6	$25\frac{3}{8}$	645	20	508	161/4	413	191/2	495	16.5	419	$16\frac{3}{4}$	425	41/2	114	18	73	33
7	$25\frac{3}{8}$	645	20	508	18¾	476	22	559	19	483	191/4	489	41/8	105	21	84	38
8	$25\frac{3}{8}$	645	20	508	213/4	552	241/2	622	22	559	213/4	552	45/8	117	24	95	43
9	253/8	645	20	508	23¾	603	27	686	24	610	241/4	616	51/8	130	27	106	48
10	$25\frac{3}{8}$	645	20	508	26¾	679	291/2	749	27	686	26¾	679	55/8	143	30	117	53
11	301/4	768	24%	632	26¾	679	291/2	749	27	686	26¾	679	55/8	143	30	130	59
\ 12	371/4	946	31%	810	26¾	679	291/2	749	27	686	26¾	679	55/8	143	30	155	70
13	45	1143	39%	1006	26¾	679	291/2	749	27	686	263/4	679	55/8	143	30	180	82